Thermodynamic Properties of Ionic Liquids in Organic Solvents from (293.15 to 303.15) K

Ana B. Pereiro and Ana Rodríguez*

Chemical Engineering Department, Vigo University, 36210, Vigo, Spain

Densities, speeds of sound, and refractive indices of the binary mixtures of BMIM PF₆ (1-butyl-3-methyl imidazolium hexafluorophosphate), HMIM PF₆ (1-hexyl-3-methylimidazolium hexafluorophosphate), OMIM PF₆ (1-methyl-3-octylimidazolium hexafluorophosphate), and MMIM CH₃SO₄ (1,3-dimethylimidazolium methyl sulfate) with 2-butanone, ethylacetate, and 2-propanol were determined from (293.15 to 303.15) K. Excess molar volumes, changes of refractive index on mixing, and deviations in isentropic compressibility were calculated for the above systems. The liquid–liquid equilibrium data of the binary mixtures ionic liquid + 2-propanol were carried out, and they were compared with the correlated values obtained by means of the NRTL and UNIQUAC equations.

Introduction

Ionic liquids (ILs) are a group of organic salts that result from the combination of several organic cations and inorganic anions, and they may be liquid at room temperature. The most commonly studied ILs contain the imidazolium cation with varying heteroatom functionality. In this paper, we have considered the use of the following ILs formed by 1-alkyl-3methylimidazolium (C_nMMIM) as cation and hexafluorophosphate (PF₆⁻) and methyl sulfate (CH₃SO₄⁻) as anions. The ILs based on the (PF₆⁻) anion are considered historically the most important and commonly investigated, despite that this anion can undergo hydrolysis producing HF in contact with water¹ and at high temperatures;² however, the CH₃SO₄⁻ anion ILs represent halogen-free and relatively hydrolysis-stable³ compunds. They could be an interesting alternative for industrial application due to the fact that they avoid the liberation of toxic and corrosive HF into the environment.

This paper is a continuation of the thermodynamic study of ILs with imidazolium cation in the physical properties on mixing⁴⁻⁷ with organic solvents and their dependency with the temperature since they are necessary to determine the liquid—liquid equilibria (LLE) and then designing extractive process involving ILs on an industrial scale for azeotropic mixtures. As the ILs are relatively new, experimental measurements of physical properties are extremely scarce but clearly needed.

In this paper, the densities, refractive indices, and speeds of sound of the binary mixtures BMIM PF₆ or MMIM CH₃SO₄ + 2-butanone or ethylacetate or 2-propanol, HMIM PF₆ + 2-propanol, and OMIM PF₆ + ethylacetate from (293.15 to 303.15) K and atmospheric pressure were measured. Excess and derived properties have been calculated from the experimental data. A function of the mole fraction and temperature polynomial equation⁸ was used to fit these quantities. The standard deviations between experimental and calculated values are shown. LLE data of the binary mixtures BMIM PF₆ or HMINPF₆ + 2-propanol in the range from (278.15 to 343.15) K and from (278.15 to 328.15) K were determined, respectively. The LLE for the binary mixture BMINPF₆ + 2-propanol was

* Corresponding author. Tel.: +34 986 81 23 12. Fax: +34 986 81 23 80. E-mail: aroguez@uvigo.es.

Figure 1. Schematic structures of MMIM CH_3SO_4 and RMIM PF_6 where R can be B (butyl), H (hexyl), or O (octyl).

Table 1. Density ρ and Refractive Index n_D for Pure Components at 298.15 K and Comparison with Literature Data

	ho/g	·cm ⁻³	n _D		
component	exptl	lit	exptl	lit	
2-butanone	0.7997	0.79974 ^a	1.37618	1.37685 ^b	
ethylacetate	0.8944	0.8940^{c}	1.36977	1.3704 ^c	
2-propanol	0.7810	0.7810^{d}	1.37496	1.3752^{d}	
BMIM PF ₆	1.3673	1.36745 ^e	1.40937	na ^m	
		1.36788 ^f			
HMIM PF ₆	1.2937	1.2935^{g}	1.41787	na	
OMIM PF ₆	1.2357	1.23684^{h}	1.42302	1.423^{i}	
		1.2245^{j}			
MMIM CH ₃ SO ₄	1.3272	1.3290^{k}	1.48270	na	
		1.328^{l}			

^{*a*} Ref 11. ^{*b*} Ref 12. ^{*c*} Ref 13. ^{*d*} Ref 14. ^{*e*} Ref 15. ^{*f*} Ref 16. ^{*s*} Ref 17. ^{*h*} Ref 18. ^{*i*} Ref 19. ^{*j*} Ref 20. ^{*k*} Ref 21. ^{*l*} Ref 22. ^{*m*} na, not applicable.

determined until 343.15 K in order to prevent hydrolysis. Moreover, the experimentally obtained LLE data were correlated by applying the NRTL⁹ and UNIQUAC¹⁰ equations.

Experimental Section

Chemicals. The chemicals were supplied by Merck for 2-butanone and 2-propanol (99.5 % and 99.7 % mass fraction, respectively), by Fluka for ethylacetate (99.8 % mass fraction), and by Green Solutions Chemicals S. L. the ILs with a certified purity higher than 98 % mass fraction. Chromatographic tests of the organic solvents showed purities that fulfilled purchaser specifications. Before using, the reagents were degassed ultrasonically, dried over freshly activated molecular sieves (types

Table 2. Density ρ , Excess Molar Volume $V_{\rm m}^{\rm E}$, Refractive Index $n_{\rm D}$, Changes of Refractive Index on Mixing $\Delta n_{\rm D}$, Speed of Sound *u*, Isentropic Compressibility κ_s , and Deviation in Isentropic Compressibility $\Delta \kappa_s$ for the Binary Mixtures at (293.15, 298.15 and 303.15) K

	ρ	$V_{\rm m}^{\rm E}$			и	$\kappa_{\rm S}$	$\Delta \kappa_{\rm S}$		ρ	$V_{\rm m}^{\rm E}$			и	κs	$\Delta \kappa_{\rm S}$
x_1	g·cm ⁻³	cm ³ ·mol	$n_{\rm D}$	$\Delta n_{\rm D}$	$\overline{m} \cdot s^{-1}$	$\overline{T \cdot Pa^{-1}}$	$\overline{T \cdot Pa^{-1}}$	x_1	g•cm ⁻³	cm ³ ·mol	n _D	$\Delta n_{\rm D}$	$\overline{\mathbf{m}}\cdot\mathbf{s}^{-1}$	$\overline{T \cdot Pa^{-1}}$	$\overline{T \cdot Pa^{-1}}$
						BMIM	$PF_{6}(1) +$	- 2-Butand	one (2)						
							T = 29	3.15 K							
0	0.8056	0	1.37879	0	1212	845	0	0.5943	1.2541	-1.456	1.40795	0.0102	1399	407	-140
0.0533	0.8777	-0.742	1.38660	0.0061	1242	739	-80	0.7085	1.2939	-1.036	1.40900	0.0076	1418	385	-106
0.1058	0.9388	-1.249	1.39154	0.0094	1265	666	-126	0.8093	1.3239	-0.647	1.40971	0.0051	1433	368	-72
0.2081	1.0362	-1.816 -1.084	1.39807	0.0126	1301	570	-1/1 -184	0.9013	1.3483	-0.333 -0.141	1.41019	0.0026	1444	356	-38 -20
0.4044	1.1679	-1.929	1.40475	0.0133	1360	463	-180	1	1.3716	0.141	1.41042	0.0014	1449	344	20
0.4926	1.2116	-1.742	1.40661	0.0121	1380	433	-165	-		-		-			-
							T = 29	8.15 K							
0	0.7997	0	1.37618	0	1192	880	0	0.5943	1.2501	-1.603	1.40645	0.0105	1390	414	-152
0.0533	0.8726	-0.846	1.38487	0.0069	1224	765	-87	0.7085	1.2898	-1.140	1.40757	0.0079	1408	391	-114
0.1058	0.9340	-1.390	1.39004	0.0103	1248	687 586	-136	0.8093	1.3198	-0.723	1.40833	0.0053	1421	375	-77
0.2081	1.0313	-2.082	1.39042	0.0133	1280	524	-184 -197	0.9013	1.3440	-0.336 -0.165	1.40888	0.0028	1433	357	-41 -22
0.4044	1.1632	-2.032	1.40296	0.0130	1348	473	-193	1	1.3673	0	1.40937	0	1443	351	0
0.4926	1.2073	-1.877	1.40505	0.0125	1369	442	-177								
							T = 30	3.15 K							
0	0.7949	0	1.37355	0	1163	931	0	0.5943	1.2457	-1.650	1.40517	0.0111	1374	426	-165
0.0533	0.8676	-0.845	1.38273	0.0073	1195	807	-93	0.7085	1.2855	-1.183	1.40617	0.0082	1393	401	-124
0.1058	0.9291	-1.412 -2.013	1.38810	0.0109	1220	724 614	-14/	0.8093	1.3150	-0.764 -0.367	1.40668	0.0052	1408	384 370	-84 -44
0.2992	1.0953	-2.185	1.39814	0.0133	1200	547	-212	0.9491	1.3512	-0.168	1.40779	0.0015	1425	364	-23
0.4044	1.1590	-2.133	1.40149	0.0140	1322	494	-206	1	1.3630	0	1.40808	0	1431	358	0
0.4926	1.2030	-1.950	1.40357	0.0130	1349	457	-192								
						BMIM	$PF_{6}(1) +$	Ethylace	tate (2)						
							T = 29	3.15 K							
0	0.9005	0	1.37241	0	1162	822	0	0.5936	1.2687	-1.567	1.40599	0.0109	1379	414	-124
0.0520	0.9563	-0.734	1.37948	0.0051	1182	749	-49	0.7000	1.3010	-1.171	1.40788	0.0087	1399	393	-95
0.0979	0.9990	-1.134	1.38419	0.0080	1200	695	-80	0.8146	1.3309	-0.710	1.40911	0.0055	1421	372	-61
0.1980	1.0776	-1.702 -1.044	1.39206	0.0121	1240	603 526	-124 -145	0.8997	1.3506	-0.3/9	1.40991	0.0031	1438	358	-34 -17
0.3968	1.1914	-1.980	1.40129	0.0137	1319	482	-150	1	1.3716	0.200	1.41069	0.0017	1455	344	0
0.4883	1.2307	-1.853	1.40391	0.0128	1350	446	-143								
							T = 29	8.15 K							
0	0.8944	0	1.36977	0	1141	859	0	0.5936	1.2647	-1.712	1.40451	0.0112	1366	424	-134
0.0520	0.9506	-0.783	1.37726	0.0054	1162	780	-53	0.7000	1.2970	-1.290	1.40638	0.0089	1391	399	-105
0.0979	0.9934	-1.193 -1.772	1.38208	0.0084	1180	618	-86 -140	0.8146	1.3266	-0.757 -0.402	1.40768	0.0057	1412	378	-67 -37
0.2939	1.1331	-2.029	1.39538	0.0124	1228	545	-164	0.9499	1.3403	-0.229	1.40915	0.0032	1427	358	-19
0.3968	1.1868	-2.099	1.39946	0.0140	1310	491	-166	1	1.3673	0	1.40937	0	1443	351	0
0.4883	1.2266	-2.011	1.40230	0.0132	1338	455	-156								
							T = 30	3.15 K							
0	0.8882	0	1.36712	0	1111	912	0	0.5936	1.2603	-1.812	1.40301	0.0116	1354	433	-151
0.0520	0.9446	-0.812 -1.254	1.37520	0.0059	1137	819	-64	0.7000	1.2926	-1.360 -0.702	1.40490	0.0091	1378	407	-117
0.1980	1.0670	-1.875	1.38819	0.0130	1207	643	-159	0.8997	1.3420	-0.427	1.40723	0.0033	1401	372	-42
0.2939	1.1280	-2.124	1.39346	0.0143	1247	570	-180	0.9499	1.3529	-0.224	1.40793	0.0019	1420	367	-20
0.3968	1.1820	-2.204	1.39774	0.0144	1291	508	-185	1	1.3630	0	1.40808	0	1431	358	0
0.4883	1.2220	-2.116	1.40065	0.0135	1323	468	-174								
						BMIM	$PF_{6}(1) +$	- 2-Propa	nol (2)						
							T = 29	3.15 K							
0	0.7850	0	1.37707	0	1156	953	0	0.8175	1.3282	-0.183	1.40833	0.0038	1429	369	-86
0.0008	0.7863	-0.004	1.37717	0.0001	1156	951	-1	0.8945	1.3476	-0.075	1.40869	0.0015	1441	358	-51
0.0011	0.7869	-0.012	1.37726	0.0002	1157	950 200	-2	0.9542	1.3615	-0.020	1.40976	0.0006	1449	350	-22
0./130	1.2703	0.550	1.40727	0.0002	1409	200	-131	1	1.3/10	U	1.41009	U	1433	344	0
0	0 7810	0	1 37/06	0	1130	086	T = 29	8.15 K 0.8175	1 3240	-0.206	1 /0680	0 0038	1/17	376	_01
0.0008	0.7823	-0.008	1.37509	0.0001	1139	985	-1	0.8945	1.3434	-0.092	1.40738	0.0038	1429	365	-54
0.0011	0.7829	-0.014	1.37521	0.0002	1140	984	-2^{1}	0.9542	1.3572	-0.027	1.40844	0.0007	1437	357	-24
0.7136	1.2943	-0.370	1.40584	0.0063	1397	396	-138	1	1.3673	0	1.40937	0	1443	351	0
							T = 30	3.15 K							
0	0.7766	0	1.37278	0	1121	1025	0	0.8175	1.3198	-0.236	1.40562	0.0040	1405	384	-96
0.0008	0.7780	-0.009	1.37301	0.0002	1121	1022	-2	0.8945	1.3393	-0.120	1.40595	0.0016	1417	372	-57
0.7136	1.2900	-0.017 -0.401	1.3/312	0.0003	1385	404	-145	0.9542	1.3530	-0.039	1.40721	0.0008	1425	304 358	-25
~		·····					- I-	-		~				220	

Table 2	(Continued)	
---------	-------------	--

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
HMIM $PF_6(1) + 2$ -Propanol (2) T = 298.15 K 0 0.7810 0 1.37496 0 1139 986 0 0.6958 1.2320 -0.156 1.41282 0.0080 1375	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
T = 298.15 K 0 0.7810 0 1.37496 0 1139 986 0 0.6958 1.2320 -0.156 1.41282 0.0080 1375	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
0 0.7810 0 1.37496 0 1139 986 0 0.6958 1.2320 -0.156 1.41282 0.0080 1375	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	408 - 87 391 - 35 382 - 3 281 - 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	382 -3
0.0024 0.7854 -0.043 1.37542 0.0004 1141 978 -7 0.9933 1.2922 0.073 1.41766 0.0001 1423	201 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	301 0
T = 303.15 K	
0 0.7766 0 1.37278 0 1121 1025 0 0.6958 1.2279 -0.192 1.41139 0.0082 1363	438 -145
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	417 -93 399 -37
0.0024 0.7811 -0.061 1.37337 0.0005 1124 1014 -9 0.9933 1.2883 0.036 1.41624 0.0001 1410	390 -3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	389 0
$OMIM PE_{(1)} + Ethylacatate (2)$	
T = 293.15 K	
0 0.9005 0 1.37241 0 1162 822 0 0.6046 1.1827 -1.249 1.41759 0.0137 1358	458 -108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	441 -83 425 -57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	411 -28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	398 -2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	576 0
T = 298.15 K	
0 0.8944 0 1.36977 0 1141 859 0 0.6046 1.1785 -1.313 1.41599 0.0140 1344 0.0547 0.9486 -0.762 1.38058 0.0079 1168 773 -61 0.7033 1.1962 -0.983 1.41820 0.0110 1361	470 -117 451 -91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	435 -62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	421 -31 409 -2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	409 2 408 0
0.4944 1.1539 -1.554 1.41271 0.0166 1323 495 -141	
T = 303.15 K 0 0.8882 0 1.36712 0 1111 912 0 0.6046 1.1744 -1.381 1.41437 0.0143 1330	481 -133
0.0547 0.9429 -0.805 1.37906 0.0090 1147 807 -78 0.7033 1.1922 -1.044 1.41663 0.0112 1348	462 -103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	445 -71 431 -36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	419 -2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	418 0
$MMIM CH SO (1) \pm 2 Butanona (2)$	
T = 293.15 K	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	256 -94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	235 -35 -12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	225 0
0.7074 1.2440 -1.498 1.47023 0.0171 1703 277 -129	
T = 298.15 K 0 0.7997 0 1.37618 0 1192 880 0 0.7983 1.2701 -1.099 1.47366 0.0124 1.737	261 -100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	239 -37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	232 -14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
T = 303.15 K	
0 0.7949 0 1.37355 0 1163 931 0 0.7983 1.2664 -1.138 1.47229 0.0127 1724 0.0006 0.7960 -0.069 1.37467 0.0011 1164 927 -3 0.9284 1.3035 -0.273 1.47781 0.0042 1778	266 -108 243 -40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	236 -15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ada

Table 2	(Continu	ed)													
	ρ	$V_{\rm m}^{\rm E}$			и	$\kappa_{\rm S}$	$\Delta \kappa_{\rm S}$		ρ	$V_{\rm m}^{\rm E}$			и	$\kappa_{\rm S}$	$\Delta \kappa_{\rm S}$
x_1	g·cm ⁻³	cm ³ ·mol	$n_{\rm D}$	$\Delta n_{\rm D}$	$\overline{m \cdot s^{-1}}$	T•Pa ⁻¹	$\overline{T \cdot Pa^{-1}}$	x_1	g·cm ⁻³	cm ³ ·mol	$n_{\rm D}$	$\Delta n_{\rm D}$	$\overline{\mathbf{m}}\cdot\mathbf{s}^{-1}$	$\overline{T \cdot Pa^{-1}}$	$\overline{T \cdot Pa^{-1}}$
						MMIM C	U SO (1) \perp Ethul	acatata (2)						
							H3504 (1) + Euryr	acetate (2)						
0	0.0005	0	1 27241	0	11(2)	000	T = 29	3.15 K	1 2122	0.224	1 40000	0.0040	1001	025	22
0 85 40	1.2066	0 804	1.3/241	0 0096	1765	822	65	0.9294	1.3133	-0.224	1.48008	0.0040	1801	235	-33
0.8549	1.2900	-0.804	1.4/033	0.0080	1705	247	-05	0.9491	1.31//	-0.093	1.48080	0.0026	1808	232	-24
0.8740	1.3083	-0.381	1.477884	0.0070	1773	238	-43	1	1.5509	0	1.40392	0	1620	223	0
							T = 20	98 15 K							
0	0.8944	0	1.36977	0	1141	859	0	0.9294	1.3098	-0.261	1.47876	0.0040	1789	239	-35
0.8549	1.2930	-0.850	1.47553	0.0092	1752	252	-69	0.9491	1.3142	-0.129	1.47955	0.0026	1795	236	-25
0.8746	1.2975	-0.697	1.47640	0.0079	1765	247	-61	1	1.3272	0	1.48270	0	1813	229	0
0.9072	1.3047	-0.415	1.47750	0.0053	1778	243	-45								
							T = 30)3.15 K							
0	0.8882	0	1.36712	0	1111	912	0	0.9294	1.3062	-0.290	1.47752	0.0043	1777	243	-38
0.8549	1.2893	-0.896	1.47440	0.0097	1739	256	-75	0.9491	1.3107	-0.154	1.47822	0.0027	1782	240	-27
0.8746	1.2938	-0.730	1.47522	0.0082	1746	254	-64	1	1.3237	0	1.48129	0	1801	233	0
0.9072	1.3010	-0.440	1.47618	0.0055	1764	247	-49								
						MMIM (CH_3SO_4 (1) + 2-Pro	opanol (2)						
							T = 29	93.15 K							
0	0.7850	0	1.37707	0	1156	953	0	0.5987	1.2040	-0.819	1.46137	0.0203	1611	320	-197
0.0490	0.8397	-0.258	1.38865	0.0063	1177	859	-58	0.6937	1.2399	-0.641	1.46768	0.0165	1684	284	-164
0.0981	0.8888	-0.433	1.39897	0.0114	1205	775	-106	0.7992	1.2742	-0.340	1.47404	0.0116	1743	258	-113
0.1987	0.9757	-0.670	1.41695	0.0186	1269	636	-172	0.9042	1.3048	-0.093	1.47881	0.0051	1791	239	-56
0.2961	1.0458	-0.810	1.43085	0.0221	1338	534	-204	0.9502	1.3175	-0.031	1.48087	0.0023	1807	232	-29
0.4055	1.1120	-0.892	1.44372	0.0233	1431	439	-219	1	1.3309	0	1.48392	0	1826	225	0
0.5043	1.1624	-0.886	1.45335	0.0224	1525	370	-216								
							T = 29	98.15 K							
0	0.7810	0	1.37496	0	1139	986	0	0.5987	1.2003	-0.852	1.46001	0.0205	1605	324	-209
0.0490	0.8359	-0.287	1.38617	0.0059	1167	878	-72	0.6937	1.2363	-0.6/5	1.46641	0.0167	1670	290	-17/1
0.0981	0.8848	-0.449	1.39708	0.0116	1198	/88	-124	0.7992	1.2/0/	-0.375	1.47250	0.0114	1729	263	-118
0.1987	0.9/18	-0.701	1.41521	0.0188	12/1	637 525	-199	0.9042	1.3014	-0.129	1.47/43	0.0050	1///	243	-58
0.2901	1.0420	-0.850	1.42948	0.0220	1352	525	-237	0.9502	1.3140	-0.052	1.4/900	0.0023	1/9/	230	-31
0.4033	1.1065	-0.938 -0.956	1.44243	0.0238	1444	455	-247	1	1.5272	0	1.46270	0	1815	229	0
0.5045	1.1390	0.950	1.45200	0.0228	1554	307	238								
0	0 7766	0	1 27270	0	1121	1025	T = 30	J3.15 K	1 1067	-0.000	1 15926	0.0206	1602	226	_225
0.0400	0.7700	-0 306	1 38201	0 0059	1121	884	-102	0.5907	1.1907	-0.909	1.45050	0.0200	1662	204	-182
0.0490	0.0310	-0.500	1 30500	0.0058	1207	004 770	-162	0.0937	1.2327	-0.720 -0.437	1.40462	0.0108	1720	294 267	-102 -125
0.10901	0.0000	-0.764	1 41455	0.0202	1207	610	-240	0.7992	1 2074	-0.155	1 47602	0.00113	1720	207	-62
0.2961	1 0383	-0.928	1 42882	0.0239	1370	513	-277	0.9502	1 3104	-0.058	1 47820	0.0023	1785	239	-33
0.4055	1.1047	-1.017	1.44156	0.0248	1459	425	-278	1	1.3237	0	1.48129	0	1801	233	0
0.5043	1.1550	-0.984	1.45073	0.0232	1534	368	-258		1.0207	Ŭ		2	1001	200	0

3 Å and 4 Å, supplied by Aldrich) for several weeks, and kept in an inert argon atmosphere as soon as the bottles were opened.

To reduce the ILs water content to negligible values (mass fraction lower than 0.03 %, determined using a 756 Karl Fisher coulometer), vacuum (2×10^{-1} Pa) and moderate temperature (343.15 K) were applied for RMIM PF₆ and MMIM CH₃SO₄ for several days, respectively, always immediately prior to their use. They were submitted to NMR and positive FABMS (FISONS VG AUTOSPEC mass spectrometer) to ensure purity.

The RMIM PF_6 and MMIM CH_3SO_4 structures are shown in Figure 1. The physical properties of the pure ILs and organic solvents at 298.15 K are listed in Table 1, together with recent literature^{11–22} values.

Procedure. The samples were prepared by filling glass vials with the IL and the organic solvents. Vials are closed with screw caps to ensure a secure seal. The sample is taken from the vial with a syringe through a silicone septum and is immediately put into the apparatus. The mass of the chemicals was determined using a Mettler AX-205 Delta Range balance with a precision of $\pm 10^{-5}$ g. The estimated uncertainty of the composition of the mixtures was $\pm 10^{-4}$ mole fraction.

The density and speed of sound of the pure liquids and mixtures were measured with an Anton Paar DSA 48 digital

vibrating-tube densimeter. The uncertainty in the measurement of the samples has been found to be lower than $\pm 10^{-4}$ g·cm⁻³ for the density and ± 1 m·s⁻¹ for the speed of sound. The apparatus was calibrated by measuring the density of Millipore quality water and ambient air according to instructions. The calibration was checked with pure liquids with known density and speed of sound.

The refractive indices were determined by the automatic refractometer ABBEMAT-WR Dr. Kernchen with an uncertainty in the experimental measurements of $\pm 4 \times 10^{-5}$. The apparatus was calibrated by measuring the refractive index of Millipore quality water and tetrachloroethylene (supplied by the company) before each series of measurements according to instructions. The calibration was checked with pure liquids with known refractive index.

The tie lines were determined in a jacketed glass vessel containing a magnetic stirrer connected to a temperaturecontrolled circulating bath (controlled to ± 0.01 K). The vessel was closed to moisture and could be flushed with dry argon. The temperature in the cell was measured with a F200 ASL digital thermometer with an uncertainty of ± 0.01 K. The measurements were started with the addition of 100 mL of the immiscible binary mixture of known composition. The temperature of known composition.

Table 3.	Fitting	Parameters	A _{ij} Calculat	ed from E	Equation 4	and Stan	dard Dev	iations (σ)

		BMIM F	$PF_6(1) + 2$ -Butanone (2)	2)		
$V^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	$A_{11} = -6.923$	$A_{21} = 5.196$	$A_{31} = -2.064$	$A_{41} = 1.467$	$A_{51} = -0.560$	$\sigma = 0.006$
, m, enn mor	$A_{12} = -1.3210$	$A_{22}^{21} = -1.554$	$A_{32} = 1.661$	$A_{42} = 5.879$	$A_{52} = -5.873$	
	$A_{13} = 0.505$	$A_{23} = 1.636$	$A_{33} = -1.895$	$A_{43} = -4.829$	$A_{53} = 5.470$	
$\Delta n_{\rm D}$	$A_{11} = 0.0478$	$A_{21} = -0.0319$	$A_{31} = 0.0134$	$A_{41} = -0.0069$	$A_{51} = 0.0234$	$\sigma = 0.0001$
b	$A_{12} = 0.0019$	$A_{22} = 0.0035$	$A_{32} = -0.0011$	$A_{42} = -0.0152$	$A_{52} = 0.0342$	
	$A_{13} = 0.0019$	$A_{23}^{22} = -0.0019$	$A_{33} = -0.0058$	$A_{43} = -0.0079$	$A_{53} = -0.0100$	
	$A_{61} = -0.0213$	$A_{62}^{25} = -0.0191$	$A_{63} = 0.0273$	15	55	
$\Delta \kappa_{\rm s}/{\rm T}\cdot{\rm Pa}^{-1}$	$A_{11} = -655$	$A_{21} = 397$	$A_{31} = -201$	$A_{41} = 288$	$A_{51} = -271$	$\sigma = 0.9$
	$A_{12} = -94$	$A_{22} = 87$	$A_{32} = -35$	$A_{42} = -25$	$A_{52} = -24$	
	$A_{13} = -12$	$A_{23} = -55$	$A_{33} = 2.9$	$A_{43} = 130$	$A_{53}^{52} = -32$	
	10	20	55	15	55	
		BMIM P	$F_6(1)$ + Ethylacetate (2)	2)		
$V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	$A_{11} = -7.334$	$A_{21} = 4.360$	$A_{31} = -0.004$	$A_{41} = 1.652$	$A_{51} = -3.124$	$\sigma = 0.009$
	$A_{12} = -1.439$	$A_{22} = -0.930$	$A_{32} = 3.675$	$A_{42} = 2.151$	$A_{52} = -4.830$	
	$A_{13} = 0.408$	$A_{23} = 0.792$	$A_{33} = -2.602$	$A_{43} = -1.011$	$A_{53} = 3.454$	
$\Delta n_{\rm D}$	$A_{11} = 0.0505$	$A_{21} = -0.0289$	$A_{31} = 0.0138$	$A_{41} = -0.0102$	$A_{51} = 0.0088$	$\sigma = 0.0001$
	$A_{12} = 0.0031$	$A_{22} = 0.0016$	$A_{32} = -0.0070$	$A_{42} = -0.0084$	$A_{52} = 0.0145$	
	$A_{13} = -0.0001$	$A_{23} = -0.0010$	$A_{33} = 0.0020$	$A_{43} = -0.0014$	$A_{53} = 0.0036$	
$\Delta \kappa_{\rm s}/{\rm T}\cdot{\rm Pa}^{-1}$	$A_{11} = -567$	$A_{21} = 289$	$A_{31} = -31$	$A_{41} = 68$	$A_{51} = -131$	$\sigma = 0.5$
	$A_{12} = -75$	$A_{22} = 201$	$A_{32} = -392$	$A_{42} = -348$	$A_{52} = 635$	
	$A_{13} = -46$	$A_{23} = -139$	$A_{33} = 294$	$A_{43} = 445$	$A_{53} = -627$	
		BMIM I	$PF_6(1) + 2$ -Propanol (2))		
$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	$A_{11} = -2.875$	$A_{21} = 3.984$	$A_{31} = -5.103$	$A_{41} = 5.861$	$A_{51} = -1.995$	$\sigma = 0.001$
	$A_{12} = 0.210$	$A_{22} = -0.600$	$A_{32} = -1.322$	$A_{42} = 2.195$	$A_{52} = -0.677$	
	$A_{13} = -0.914$	$A_{23}^{22} = 2.958$	$A_{33} = -1.409$	$A_{43} = -3.913$	$A_{53} = 3.077$	
$\Delta n_{\rm D}$	$A_{11} = -0.0107$	$A_{21} = 0.1732$	$A_{31} = -0.1170$	$A_{41} = -0.2362$	$A_{51} = 0.2056$	$\sigma = 0.0001$
5	$A_{12} = -0.0241$	$A_{22} = 0.1036$	$A_{32} = -0.0813$	$A_{42} = -0.1191$	$A_{52} = 0.1345$	
	$A_{13} = -0.0236$	$A_{23} = 0.0989$	$A_{33} = -0.0824$	$A_{43} = -0.0627$	$A_{53} = 0.0699$	
$\Delta \kappa_{\rm s}/{\rm T}\cdot{\rm Pa}^{-1}$	$A_{11} = -797$	$A_{21} = 552$	$A_{31} = -779$	$A_{41} = 1043$	$A_{51} = -525$	$\sigma = 0.1$
-	$A_{12} = -87$	$A_{22} = 70$	$A_{32} = 135$	$A_{42} = -492$	$A_{52} = 354$	
	$A_{13} = -23$	$A_{23} = 17$	$A_{33} = 4.9$	$A_{43} = 81$	$A_{53} = -111$	
		HMIM I	$PF_6(1) + 2$ -Propanol (2))		
$V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$	$A_{11} = -1.661$	$A_{21} = 4.335$	$A_{31} = -8.305$	$A_{41} = 11.270$	$A_{51} = 1.212$	$\sigma = 0.015$
· m· · ····	$A_{12} = 0.506$	$A_{22} = -6.754$	$A_{32} = 17.423$	$A_{42} = -13.878$	$A_{52} = -0.667$	
	$A_{13} = -0.595$	$A_{23} = 5.213$	$A_{33} = -14.724$	$A_{43} = 13.974$	$A_{53} = -2.415$	
$\Lambda n_{\rm D}$	$A_{11} = 0.0474$	$A_{21} = -0.0390$	$A_{31} = 0.0570$	$A_{41} = -0.0715$	$A_{51} = 0.0210$	$\sigma = 0.0001$
<u>D</u>	$A_{12} = 0.0008$	$A_{22} = 0.0115$	$A_{32} = -0.0770$	$A_{42} = 0.1333$	$A_{52} = 0.0725$	
	$A_{12} = 0.0012$	$A_{22} = -0.0086$	$A_{22} = 0.0588$	$A_{42} = -0.1105$	$A_{52} = 0.0659$	
$\Delta \kappa_s / T \cdot P a^{-1}$	$A_{11} = -765$	$A_{21} = 528$	$A_{31} = -532$	$A_{41} = 667$	$A_{51} = -360$	$\sigma = 0.3$
	$A_{12} = -54$	$A_{22} = -54$	$A_{32} = 101$	$A_{42} = -2.18$	$A_{52} = 229$	0 010
	$A_{12} = -32$	$A_{23} = 105$	$A_{33} = -296$	$A_{43} = 665$	$A_{53} = -526$	
	1115 52	1123 100	1133 200	1143 000	1155 520	
		OMIM P	$PF_6(1)$ + Ethylacetate (2)	2)		
$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	$A_{11} = -5.939$	$A_{21} = 4.078$	$A_{31} = -1.117$	$A_{41} = 1.865$	$A_{51} = -3.323$	$\sigma = 0.011$
, m	$A_{12} = -0.576$	$A_{22} = 0.039$	$A_{32} = -0.448$	$A_{42} = 0.816$	$A_{52} = 0.580$	
	$A_{13} = -0.035$	$A_{23} = 0.128$	$A_{33} = -0.120$	$A_{43} = -0.123$	$A_{53} = -0.115$	
$\Lambda n_{\rm D}$	$A_{11} = 0.0649$	$A_{21} = -0.0407$	$A_{31} = 0.0246$	$A_{41} = -0.0202$	$A_{51} = 0.0121$	$\sigma = 0.0001$
	$A_{12} = 0.0019$	$A_{22} = -0.0022$	$A_{32} = 0.0151$	$A_{42} = 0.0039$	$A_{52} = -0.0250$	0 010001
	$A_{12} = 0.0012$	$A_{23} = 0.0027$	$A_{33} = -0.0213$	$A_{43} = -0.0183$	$A_{53} = 0.0519$	
$\Delta \kappa_s / T \cdot Pa^{-1}$	$A_{11} = -515$	$A_{21} = 348$	$A_{31} = -228$	$A_{41} = 147$	$A_{51} = -16$	$\sigma = 0.6$
Lity I I u	$A_{12} = -57$	$A_{22} = 125$	$A_{32} = 77$	$A_{42} = -389$	$A_{52} = -90$	0 010
	$A_{12} = -65$	$A_{22} = -56$	$A_{32} = -77$	$A_{42} = 485$	$A_{52} = -93$	
	-13 00	-23 00	· ·	-40 .00	-32 20	
		MMIM CH	I_2 SO ₄ (1) + 2-Butanone	(2)		
$V^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	$A_{11} = -6.874$	$A_{21} = -0.757$	$A_{31} = -9.510$	$A_{41} = 26\ 404$	$A_{51} = -10.287$	$\sigma = 0.008$
v _m /cm ^{-mon}	$A_{12} = -0.332$	$A_{22} = -1.293$	$A_{22} = -4.172$	$A_{12} = 10.389$	$A_{ro} = -5.431$	0 0.000
	$A_{12} = 0.352$ $A_{12} = 0.153$	$A_{22} = -0.428$	$A_{32} = 4.172$ $A_{32} = 3.428$	$A_{42} = 10.369$ $A_{42} = -3.267$	$A_{52} = -0.008$	
٨	$A_{13} = 0.133$ $A_{13} = 0.2120$	$A_{23} = -0.428$ $A_{23} = -0.5687$	$A_{33} = 5.426$ $A_{33} = 0.6122$	$A_{43} = -3.207$	$A_{53} = -0.098$	q = 0.0002
$\Delta n_{\rm D}$	$A_{11} = 0.2139$ $A_{12} = 0.0106$	$A_{21} = 0.3087$ $A_{11} = 0.0130$	$A_{31} = 0.0132$ $A_{32} = -0.1080$	$A_{41} = 0.1449$ $A_{42} = 0.1805$	$A_{51} = -0.1184$	0 - 0.0003
	$A_{12} = 0.0100$ $A_{12} = 0.0124$	$A_{22} = 0.0139$ $A_{22} = -0.0882$	$A_{32} = 0.1009$ $A_{32} = 0.1623$	$A_{42} = 0.1095$ $A_{42} = -0.1048$	$A_{52} = 0.1164$ $A_{52} = 0.0271$	
$\Lambda_{\rm rc}/T_{\rm e}D_{\rm e}^{-1}$	$A_{13} = 0.0124$ $A_{13} = -740$	$A_{23} = -0.0882$	$A_{33} = 0.1025$ $A_{33} = -682$	$A_{43} = -0.1048$	$A_{53} = 0.0271$ $A_{11} = -547$	q = 0.6
$\Delta k_{\rm S}/1$ T d	$A_{11} = -740$ $A_{12} = 2.4$	$A_{21} = 421$ $A_{11} = -150$	$A_{31} = -0.62$ $A_{11} = -0.62$	$A_{41} = 1024$ $A_{42} = -565$	$A_{51} = -347$ $A_{12} = 502$	0 - 0.0
	$A_{12} = 2.4$ $A_{12} = -140$	$A_{22} = -139$ $A_{22} = 372$	$A_{32} = 237$ $A_{33} = -510$	$A_{42} = -303$ $A_{42} = 632$	$A_{52} = -444$	
	1113 - 147	$11_{23} = 512$	1133 = 510	1143 = 0.52	1103	
		ММІМ СЧ	$SO_4(1) + Ethylacetate$	(2)		
$V^{E}/cm^{3}mol^{-1}$	$A_{11} = -3.350$	$A_{21} = -7.632$	$A_{21} = -9.202$	$A_{41} = 11.463$	$A_{51} = 11.251$	$\sigma = 0.005$
v _m /cm [*] ·mor	$A_{11} = 0.000$	$A_{121} = 0.597$	$A_{131} = 2.011$	$A_{12} = 2.292$	A., - 7 200	0 - 0.005
	$A_{12} = -2.110$	$A_{22} = 0.58/$	$A_{32} = 2.911$	$A_{42} = 5.383$	$A_{52} = -7.380$	
Δ	$A_{13} = -2.527$	$A_{23} = 3.010$	$A_{33} = 2.827$	$A_{43} = -1.420$	$A_{53} = -1.038$	$\sigma = 0.0001$
$\Delta n_{\rm D}$	$A_{11} = 0.0513$	$A_{21} = 0.0189$	$A_{31} = 0.0771$	$A_{41} = -0.0589$	$A_{51} = -0.0502$	v = 0.0001
	$A_{12} = 0.0024$	$A_{22} = -0.0379$	$A_{32} = -0.0445$	$A_{42} = -0.0208$	$A_{52} = 0.0499$	
$\Lambda \sim T_{\rm T} D_{\rm c}^{-1}$	$A_{13} = 0.0253$	$A_{23} = -0.0460$	$A_{33} = -0.0580$	$A_{43} = 0.0398$	$A_{53} = 0.043 / A_{53} = 420$	$\sigma = 0.2$
$\Delta \kappa_{\rm s}/1$ Pa	$A_{11} = -690$	$A_{21} = 500$	$A_{31} = -8/5$	$A_{41} = 1005$	$A_{51} = -430$	$\sigma = 0.3$
	$A_{12} = -49$	$A_{22} = 2/$	$A_{32} = 94$	$A_{42} = -494$	$A_{52} = 407$	
	$A_{13} = -11$	$A_{23} = -17$	$A_{33} = -21$	$A_{43} = 83$	$A_{53} = -75$	

		MMIM C	$H_3SO_4(1) + 2$ -Propano	d (2)		
$V_{\rm m}^{\rm E}/{\rm cm}^3\cdot{\rm mol}^{-1}$	$A_{11} = -3.596$	$A_{21} = 0.754$	$A_{31} = 1.390$	$A_{41} = 2.525$	$A_{51} = -0.777$	$\sigma = 0.007$
	$A_{12} = -0.573$	$A_{22} = 0.313$	$A_{32} = 2.709$	$A_{42} = -1.037$	$A_{52} = -4.234$	
	$A_{13} = 0.162$	$A_{23} = -0.100$	$A_{33} = -3.179$	$A_{43} = 0.771$	$A_{53} = 4.189$	
$\Delta n_{\rm D}$	$A_{11} = 0.0900$	$A_{21} = -0.0313$	$A_{31} = 0.0157$	$A_{41} = -0.0194$	$A_{51} = -0.0140$	$\sigma = 0.0001$
	$A_{12} = 0.0024$	$A_{22} = -0.0005$	$A_{32} = -0.0047$	$A_{42} = 0.0043$	$A_{52} = -0.0124$	
	$A_{13} = 0.0090$	$A_{23} = -0.0132$	$A_{33} = 0.0199$	$A_{43} = 0.0155$	$A_{53} = -0.0172$	
$\Delta \kappa_{\rm s}/{\rm T}\cdot{\rm Pa}^{-1}$	$A_{11} = -864$	$A_{21} = 238$	$A_{31} = -49$	$A_{41} = 164$	$A_{51} = -62$	$\sigma = 0.8$
	$A_{12} = -172$	$A_{22} = 332$	$A_{32} = 123$	$A_{42} = -419$	$A_{52} = -21$	
	$A_{13} = -0.5$	$A_{23} = -30$	$A_{33} = -345$	$A_{43} = 568$	$A_{53} = -168$	

ature was adjusted, and the mixture was stirred vigorously during 1 h and left to settle for 4 h. Samples were taken by a syringe from the upper and lower layers. A series of LLE measurements were made by changing the temperature in the binary mixtures.

Tie line phase compositions were determined by the measurement of density at 343.15 K from an Anton Paar DSA 48 digital vibrating-tube densimeter and the application of the corresponding fitting polynomials. The uncertainty of the phase composition is estimated to be ± 0.0005 .

Results and Discussion

The density, refractive index, speed of sound, excess molar volume, changes of refractive index on mixing, isentropic compressibility (determined by means of Laplace equation ($\kappa_{\rm S} = \rho^{-1} \cdot u^{-2}$), and deviations in isentropic compressibility of the binary mixtures BMIM PF₆ (1) or MMIM CH₃SO₄ (1) + 2-butanone (2) or ethylacetate (2) or 2-propanol (2), HMIM PF₆ (1) + 2-propanol (2), and OMIM PF₆ (1) + ethylacetate (2) from (293.15 to 303.15) K are given in Table 2. Immiscibility intervals of the binary mixtures from $x_1 = (0.0012 \text{ to } 0.6820)$ for BMIM PF₆ (1) + 2-propanol (2), from $x_1 = (0.0024 \text{ to } 0.5208)$ for HMIM PF₆ (1) + 2-propanol (2), from $x_1 = (0.0041 \text{ to } 0.7036)$ for MMIM CH₃SO₄ (1) + 2-butanone (2). and from $x_1 = (0 \text{ to } 0.8397)$ for MMIM CH₃SO₄ (1) + ethylacetate (2) in the range (293.15 to 303.15) K were found.

Excess molar volumes $V_{\rm m}^{\rm E}$, changes of refractive index on mixing $\Delta n_{\rm D}$, and deviations in isentropic compressibility $\Delta \kappa_{\rm S}$ were calculated from the experimental values, as follows:

$$V_{\rm m}^{\rm E} = \sum_{i=1}^{N} x_i M_i (\rho^{-1} - \rho_i^{\sigma^{-1}})$$
(1)

$$\Delta n_{\rm D} = n_{\rm D} - \sum_{i=1}^{N} x_i n_{\rm Di}^{\circ} \tag{2}$$

$$\Delta \kappa_{\rm S} = \kappa_{\rm S} - \sum_{i=1}^{N} x_i \kappa_{{\rm S},i} \tag{3}$$

In these equations, ρ and n_D are the density and the refractive index of the mixture; ρ_i° and n_{Di}° are the density and the refractive index of the pure components; κ_S is the isentropic compressibility of the mixture; and $\kappa_{S,i}$ is the isentropic compressibility of the pure component.

The excess and derived quantities of the binary mixtures were fitted to a function of the mole fraction and temperature polynomial equation developed as follows:

$$\Delta Q = x_1 \cdot (1 - x_1) \sum_{i=1}^n \sum_{j=1}^3 A_{ij} \cdot 10^{1-j} \cdot (2x_1 - 1)^{i-1} \cdot (T/K - 293.15)^{j-1}$$
(4)

where ΔQ is the excess or derived property, x_1 is the first

Table 4. Experimental Liquid-Liquid Equilibria for the BinaryMixtures 1-Alkyl-3-methylimidazolium Hexafluorophosphate (1) +2-Propanol (2)

	x	1		x	1
$\frac{T}{K}$	IL-poor phase	IL-rich phase	<u>— Т</u> — К	IL-poor phase	IL-rich phase
	BM	$\operatorname{IIMPF}_{6}(1)$ -	- 2-Propanol	(2)	
278.15	0.0008	0.7516	313.15	0.0027	0.5592
283.15	0.0008	0.7309	318.15	0.0036	0.5335
288.15	0.0009	0.7070	323.15	0.0044	0.4905
293.15	0.0012	0.6820	328.15	0.0059	0.4661
298.15	0.0014	0.6517	333.15	0.0081	0.4339
303.15	0.0017	0.6238	338.15	0.0109	0.4057
308.15	0.0022	0.5910	343.15	0.0133	0.3678
	HM	$\operatorname{IIMPF}_{6}(1)$	- 2-Propanol	(2)	
278.15	0.0013	0.6218	308.15	0.0047	0.4054
283.15	0.0014	0.5904	313.15	0.0064	0.3709
288.15	0.0016	0.5574	318.15	0.0103	0.3141
293.15	0.0024	0.5208	323.15	0.0215	0.2821
298.15	0.0027	0.4856	328.15	0.0377	0.2106
303.15	0.0035	0.4458			

component mole fraction, and A_{ij} is the fitting parameter. Applying the Marquardt's algorithm,²³ the degree of polynomial expression was optimized. The correlation parameters are listed in Table 3 together with the standard deviations (σ). These deviations were calculated by applying the following expression:

$$\sigma = \left(\frac{\sum_{i}^{n_{\text{DAT}}} (z_{\text{exp}} - z_{\text{pred}})^2}{n_{\text{DAT}}}\right)^{1/2}$$
(5)

where property values and the number of experimental data are represented by z and n_{DAT} , respectively.

The excess molar volumes are negative over the entire composition range for all the binary mixtures except for the system HMIM PF₆ (1) + 2-propanol (2), where the excess molar volumes present a maximum at approximately $x_1 = 0.9$ and negative values for x_1 from (0.5 to 0.75), respectively. On the other hand, changes of refractive index on mixing for the binary mixtures are positive over the whole composition range. For the deviations in isentropic compressibility negative values are observed over the entire composition range. In general terms, the excess molar volumes and the deviations properties increase when the temperature is increased.

For example, excess molar volumes, changes of refractive index on mixing and deviations in isentropic compressibility for the binary mixtures BMIM $PF_6(1) + 2$ -butanone (2) versus the mole fraction over the whole composition range and the fitted curve, obtained from the polynomial equation from (293.15 to 303.15) K, are shown in Figure 2. A comparison with the literature data in terms of excess molar volumes is made in Figure 3.

LLE studied for the binary mixtures BMIM PF_6 (1) + 2-propanol (2) and HMIM PF_6 (1) + 2-propanol (2) are shown

Figure 2. (a) Excess molar volumes $V_{\rm m}^{\rm E}$ of the binary mixtures against mole fraction x_1 for BMIM PF₆ (1) + 2-butanone (2), at \bigcirc , T = 293.15 K; \triangle , T = 298.15 K; \square , T = 303.15 K. Inset shows excess molar volumes of the binary mixtures against the temperature at equimolar composition. (b) Changes of refractive indices on mixing $\Delta n_{\rm D}$ of the binary mixtures against mole fraction for BMIM PF₆ (1) + 2-butanone (2) at \bigcirc , T = 293.15 K; \triangle , T = 298.15 K; \square , T = 303.15 K. Inset shows changes of refractive indices of the binary mixtures against the temperature at equimolar composition. (c) Deviations in isentropic compressibility $\Delta \kappa_{\rm S}$ of the binary mixtures against mole fraction for BMIM PF₆ (1) + 2-butanone (2) at \bigcirc , T = 293.15K; \triangle , T = 298.15 K; \square , T = 303.15 K. Inset shows deviations in isentropic compressibility of the binary mixtures against the temperature at equimolar composition.

in Table 4 from (278.15 to 343.15) K and from (278.15 to 328.15) K, respectively. Experimental phase diagrams of LLE investigated are shown in Figure 4. The LLE of the binary

Figure 3. Comparison of $V_{\rm m}^{\rm E}$ against mole fraction for the binary mixtures. (a) BMIM PF₆ (1) + 2-butanone (2): \bigcirc , T = 298.15 K; \bigcirc , ref 16. (b) BMIM PF₆ (1) + ethylacetate (2): \square , T = 298.15 K; \blacksquare , ref 16.

Table 5. Parameters of the NRTL and UNIQUAC Equation for the Binary Mixtures

NRTL ($\alpha = 0.3$)							
a_{12}	a_{21}	b_{12}	b_{21}				
$\overline{J \cdot mol^{-1}}$	$J \cdot mol^{-1}$	$\overline{\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1}}$	$\overline{\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1}}$	σ			
	BMIN	$MPF_6(1) + 2$ -Propa	unol (2)				
24999	20999	-79.11	-20.20	0.68			
	HMIN	$MPF_6(1) + 2$ -Propa	anol (2)				
24999	20999	-86.08	-25.23	0.79			
		UNIQUAC					
a_{12}	a_{21}	b_{12}	b_{21}				
$\overline{\mathbf{J} \cdot \mathbf{mol}^{-1}}$	$\overline{\mathbf{J} \cdot \mathbf{mol}^{-1}}$	$\overline{\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}}$	$\overline{J \cdot mol^{-1} \cdot K^{-1}}$	σ			
	BMIN	$MPF_6(1) + 2$ -Propa	unol (2)				
-2871	-1470	24.65	6.816	1.77			
	HMI	$MPF_6(1) + 2$ -Propa	anol (2)				
-2871	-1470	25.24	7.231	1.26			

mixtures MMIM $CH_3SO_4(1) + 2$ -butanone (2) or ethylacetate (2) were published previously.²⁴

Liquid–Liquid Equilibria Correlation. In this work, the NRTL and UNIQUAC equations with temperature-dependent interaction parameters are used to correlate the experimental binary LLE data. For the NRTL model, the third randomness parameter α_{ij} was fixed at (0.3) and was not optimized. The volume R_k and surface area Q_k parameters of the UNIQUAC equation were obtained from the literature.²⁵

Figure 4. Equilibrium temperature for LLE against IL mole fraction of (a) BMIM $PF_6(1) + 2$ -propanol (2): \Box ; (b) HMIM $PF_6(1) + 2$ -propanol (2): \bigcirc . experimental tie-lines and correlated NRTL (solid) and UNIQUAC (dashed) curves.

In these equations the adjustable parameter was defined as a linear temperature dependence, described as follows for NRTL and UNIQUAC, respectively:

$$\Delta g_{ij} = a_{ij} + b_{ij} \cdot T/K \text{ and } \Delta u_{ij} = a_{ij} + b_{ij} \cdot T/K$$
(6)

The SOLVER function in Microsoft EXCEL was used to adjust the parameters so that the objective function was minimized, providing the set of temperature-dependent adjustable parameters for the binary systems. The objective function is defined as follows:

objective function =
$$\sum_{i=1}^{2} (x_i^{l,exp} - x_i^{l,calc})^2$$
(7)

The calculated values of the equations are presented in Table 5. The standard deviation of the mole fraction and the temperature dependence of the correlative parameters are listed in Table 5. These deviations were calculated by applying the following expression for the binary mixtures:

$$\sigma = \left(\sum_{i=1}^{2} \left(\frac{x_i^{\text{l.exp}} - x_i^{\text{l.calc}}}{x_i^{\text{l.exp}}}\right)^2\right)^{0.5}$$
(8)

where x is the mole fraction and the indexes i and 1 provide a designation for the component and the phase, respectively. The correlative results are shown in Figure 4. The correlative

equations are good to correlate the experimental data, and similar results are obtained using both equations.

Conclusions

In this paper, density, refractive index, and speed of sound as a function of the temperature for the binary mixtures of four ILs (BMIM PF₆, HMIM PF₆, OMIM PF₆, and MMIM CH₃-SO₄) with three organic solvents (2-butanone, ethylacetate, and 2-propanol) are presented.

LLE of the binary mixtures involving BMIM PF_6 and HMIM PF_6 with 2-propanol were determined experimentally at several temperatures. An increase in the alkyl chain length of the IL results a decrease in the UCST when the second component is 2-propanol. Besides, the addition of the methyl group to the IL increases the solubility between IL and 2-propanol. The binary systems were modeled using the NRTL and UNIQUAC equations with linear temperature-dependence, adjustable parameters, and good fit of the experimental data provided.

Literature Cited

- Swatloski, R. P.; Rogers, J. D.; Rogers, R. D. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. *Green Chem.* 2003, *5*, 361–363.
- (2) Najdanovic-Visak, V.; Esperanca, J. M. S. S.; Rebelo, L. P. N.; Nunes da Ponte, M.; Guedes, H. J. R.; Seddon, K. R.; Szydlowski, J. Phase behaviour of room temperatura ionic liquid solutions: an unusually large co-solvent effect in (water + ethanol). *Phys. Chem. Chem. Phys.* 2002, *4*, 1701–1703.
- (3) Wasserscheid, P.; van Hal, R.; Bössann, A. 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even "greener" ionic liquid. *Green Chem.* 2002, 4, 400–404.
- (4) Pereiro, A. B.; Tojo, E.; Rodriguez, A.; Canosa, J.; Tojo, J. Properties of ionic liquid HMIMPF₆ with carbonates, ketones and alkyl acetates. *J. Chem. Thermodyn.* **2006**, *38*, 651–661.
- (5) Pereiro, A. B.; Santamarta, F.; Tojo, E.; Rodriguez, A.; Tojo, J. Temperature dependence of physical properties of ionic liquid 1,3dimethylimidazolium methyl sulfate. *J. Chem. Eng. Data* **2006**, *51*, 952–954.
- (6) Pereiro, A. B.; Tojo, E.; Rodriguez, A.; Canosa, J.; Tojo, J. HMImPF₆ ionic liquid that separates the azeotropic mixture ethanol + heptane. *Green Chem.* **2006**, *8*, 307–310.
- (7) Pereiro, A. B.; Rodriguez, A. Study on the phase behavior and thermodynamic properties of ionic liquids containing imidazolium cation with ethanol at several temperatures. *J. Chem. Thermodyn.* (in press).
- (8) Tovar, C. A.; Carballo, E.; Cerdeirina, C. A.; Romani, L. Excess molar volumes and excess molar heat capacities of mixtures containing (mono and poly)ethers + ethyl acetate. *J. Chem. Eng. Data* **1997**, *42*, 1085– 1089.
- (9) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968, 14, 135–144.
- (10) Abrams, D. S.; Prausnitz, J. M. Statistical thermodynamics of liquid mixtures: a new expression for the excess energy of partly or completely miscible systems. *AIChE J.* **1975**, *21*, 116–128.
- (11) Comelli, F.; Francesconi, R. Densities and excess molar volumes of propylene carbonate + linear and cyclic ketones at 298.15 K. J. Chem. Eng. Data 1995, 40, 808–810.
- (12) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents; Wiley: New York, 1986.
- (13) Das, A.; Frenkel, M.; Gadalla, N. M.; Marsh, K.; Wilhoit, R. C. TRC Thermodynamic Tables; Thermodynamic Research Center, Texas A&M University: College Station, TX, 1994.
- (14) Ritzoulis, G.; Fidantsi, A. Relative permittivities, refractive indices, and densities for the binary mixtures *N*,*N*[']-dimethylacetamide with methanol, ethanol, 1-butanol, and 2-propanol at 298.15 K. J. Chem. Eng. Data **2000**, 45, 207–209.
- (15) Harris, K. R. H.; Woolf, L. A.; Kanakudo, M. Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 2005, 50, 1777–1782.
- (16) Wang, J.; Zhu, A.; Zhao, Y.; Zhuo, K. Excess molar volumes and excess logarithm viscosities for binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate with some organic compounds. J. Solution Chem. 2005, 34, 585–596.
- (17) Letcher, T. M.; Reddy, P. Ternary (liquid + liquid) equilibria for mixtures of 1-hexyl-3-methylimidazolium (tetrafluoroborate or hexaflu-

orophosphate) + benzene + an alkane at T = 298.2 K and p = 0.1 MPa. J. Chem. Thermodyn. 2005, 37, 415–421.

- (18) Harris, K. R.; Kanakubo, M.; Woolf, L. A. Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-mehyl-3-octylimidazolium tetrafluoroborate. *J. Chem. Eng. Data* **2006**, *51*, 1161–1167.
- (19) Chiappe, C.; Pieraccini, D. Review commentary. Ionic liquids: solvent properties and organic reactivity. J. Phys. Org. Chem. 2005, 18, 275– 297.
- (20) Gu, Z.; Brennecke, J. F. Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. *J. Chem. Eng. Data* **2002**, *47*, 339–345.
- (21) Domanska, U.; Pobudkowska, A.; Wisniewska, A. Solubility and excess molar properties of 1,3-dimethylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium methylsulfate, or 1-butyl-3-methylimidazolium octylsulfate ionic liquids with *n*-alkanes and alcohols: analysis in terms of the PFP and FBT models. J. Solution Chem. 2006, 35, 311–334.
- (22) Kato, R.; Gmehling, J. Activity coefficients at infinite dilution of varioussolutesintheionicliquids[MMIM]⁺[CH₃SO₄]⁻,[MMIM]⁺[CH₃OC₂H₄SO₄]⁻,

[MMIM]⁺[(CH₃)₂PO₄]⁻, [C₅H₅NC₂H₅]⁺[(CF₃S-O₂)₂N]⁻ and [C₅H₅NK]⁺[C₂H₅OC₂H₄OSO₃]⁻. *Fluid Phase Equilib.* **2004**, *226*, 37–44.

- (23) Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–435.
- (24) Pereiro, A. B.; Canosa, J.; Rodríguez, A. Liquid-liquid equilibria of 1,3-dimethylimidazolium methyl sulfate with ketones, dialkyl carbonates and acetates. *Fluid Phase Equilib.* (in press).
- (25) Banerjee, T.; Singhi, M. K.; Sahoo, R. K.; Khanna, A. Volume, surface and UNIQUAC interaction parameters for imidazolium based ionic liquids via polarizable continuum model. *Fluid Phase Equilib.* 2005, 234, 64–76.

Received for review November 6, 2006. Accepted December 22, 2006. The authors thank the Ministerio de Educación y Ciencia (Spain) for the financial support through Project CTQ 2004-00454.

JE060497D